Recommender Systems Clustering Using Bayesian Non Negative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
A new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملBayesian Non-negative Matrix Factorization
We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model ...
متن کاملA Novel Non-Negative Matrix Factorization Method for Recommender Systems
Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scal...
متن کاملNegative Binomial Matrix Factorization for Recommender Systems
We introduce negative binomial matrix factorization (NBMF), a matrix factorization technique specially designed for analyzing over-dispersed count data. It can be viewed as an extension of Poisson matrix factorization (PF) perturbed by a multiplicative term which models exposure. This term brings a degree of freedom for controlling the dispersion, making NBMF more robust to outliers. We show th...
متن کاملOverlapping community detection using Bayesian non-negative matrix factorization.
Identifying overlapping communities in networks is a challenging task. In this work we present a probabilistic approach to community detection that utilizes a Bayesian non-negative matrix factorization model to extract overlapping modules from a network. The scheme has the advantage of soft-partitioning solutions, assignment of node participation scores to modules, and an intuitive foundation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2017.2788138